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A theoretical study of mass flow measurements was conducted for
the Impulse Base Flow Facility. The orifice method is to be used for
this measurement. This note presents an analysis of this technique,
both above and below the critical pressure ratio. Discussed are the
equations needed to determine the mass flow as a function of the charge
tube pressure, the orifice diameter and flow coefficients including the
orifice static pressure and Mach number function. This study presents
some representative charts for oxygen which can be used to select the
orifice for a specified performance to design a constant pressure com-
bustor.

It is pointed out that an error in reference 4 has been propagated
through several other reports. This report presents the correct equations
for this analysis. ‘
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DEFINITION OF SYMBOLS

Definition
Effective orifice area, inZ2,
Orifice area,‘inz.
Charge tube area, in2,
Incompressible orifice coefficient.'
Compressible orifice coefficient,
Effective orifice diameter, in.
Orifice diameter, in.
Charge tube diaméter, in.

Mach number function

‘Mach number function in orifice.

Mach number function upstream from orifice.

11

q 2CiZ :

Force defect coefficient =

He

2Cc, -1

L
c.=2 :
1

= 2f =

Acceleration of gravity = 32,2 ft/sec2.

2 n-1
= ——-ZE—-rn <} -1 n ’for r and
n-1
n+l
n
= nr, for r..

Specific heat ratio.

Mach number,



Symbol

DEFINITION OF SYMBOLS (Cont'd)

Definition

Mach number in orifice.

Mach number in charge tube upstream from orifice.

Molecular weight, 1b/lb mole.

Propellant mixture ratio.

Charge tube pressure, PSIA,

Static pressure upstream from orifice, PSIA.

Stagnation pressure upstream.from orifice, PSTA.

Pressure downstream from orifice, PSTA.

Pressure ratio across orifice,

Critical pressure ratio across the orifice,

Reynolds number = 2,272 x 10 gL .
t
1545

v

Gas constant =

Absolute temperature, °R(460 + t).
Weight flow, lb/sec.

Absolute viscosity, centipoise.

vi




I, INTRODUCTION

The short duration techniques for the experimental study of
rocket base heating problems have been developed by the Cornell
Aeronautical Laboratory. The basic principle is to store -the fuel
and oxidizer gases in charge tubes separated from a combustion chamber
by diaphragms or quick-acting valves (see Figure la). Rupture of the
diaphragms or opening of the valves permits the gases to flow into
the combustion chamber where ignition and burning occur, producing a
high enthalpy gas. This high enthalpy gas then flows through the
model rocket engine nozzles. Base heating measurements are made
during this process which lasts only in the order of milliseconds.

This technique has many advantages over more conventional base
heating experimental methods, but some fundamental problems are still
tb be solved, One of these problems is the accurate measurement of the
mass flows so that the desired ratio of fuel to oxidizer may be obtained.
The orifice method has been used for this measurement in the short
duration facility. This note presents an analysis of this technique.
Discussed are the equations needed for this analysis. They include
(1) orifice flow coefficients both from compressible and incompressible
fluid, (2) the mass flow including the Mach number functions, (3) the
orifice static pressure, and (4) the charge tube pressures. This note
also presents some representative charts for oxygen which can be used to
select the orifice for a specified performance.

II, THE WEIGHT FLOW THROUGH AN ORIFICE

The weight flow through an orifice can be expressed as a function
of the gas properties, the orifice stagnation pressure P,°, the effec-
tive orifice area Ap, and the orifice Mach number function Dy (see
Fig. 1b). ' '

1/2 : _
W= <%U> P° Ag D,. (2-1)

According'to.the continuity relationship, the following equation
can be written-

Ae DO = A DZ' . ' (2-2)



The general weight flow equation can be obtained from equations
(2-1) and (2-2).

1/2
" A <§§6> P2” Da- (2-3)

It can be seen that the weight flow is proportional to the Mach
number function D5 upstream from the orifice (see Fig. 1b), Whlch can
be determined from equation (2-2),

b

- e '
Dz = 3= D, (2-4)

and the effective orifice area Ag can be expressed with the orifice
coefficient Cp for compressible flow

A =C A. (2-5)

AO
D2 = X— C D . (2-6)
t

2
-2} ¢ p. (2-7)
@ 5.

This equation shows that the Mach number function Do is a
function of the orifice and tube diameter ratio, and is proportional
to the orifice coefficient Cp, and the orifice Mach number function
D

ol

Do

III. THE INCOMPRESSIBLE ORIFICE COEFFICIENT

The incompressible orifice coefficient Cj; varies from .6 to .7
depending on the do/d¢ ratio (values carried in many handbooks). At
given dy/d¢ ratio, the orifice coefficients vary with Reynolds number




up to a certain value of Reynolds number, and then become constant
(see Figure 2). This critical Reynolds number can be expressed as a
function of the weight flow W, the charge tube diameter dt, and the
absolute viscosity u:

) .
= 4 __‘min. .
(R yin. = 2.2712 x 10 T _ (3-1)

The values of critical weight flow for oxygen (u = .0205 at
T = 540°R) and ethyleme (p = .0099 at T = 520°R) can be expressed as

(R))

=g —emin. C ol
(02) W, =4, T 081 x 105" . (3-2)

R))

- e’min. _
(Cale) W o0 =4y 557545 x 105 ° (3-3)

These values are shown in Figures 3 énd 4 for the case d¢ = 1 in.
and d¢ = 1.75 in., respectively.

IV, THE COMPRESSIBLE ORIFICE COEFFICIENT

The effect of compressible flow was analyzed by Jobson (Ref. 4).
This theory uses the incompressible orifice coefficient as a reference
point in the short duration base heating technique. There is an error
in that report (p. 770, equation 15), Other investigators have used
this equation with the error. Ome of the purposes of this report is to
make this correction.

A. CD for Supercritical Flow (0 <r < rc)

Jobson's report yields a quadratic expression for CD:

1
' (r_ -1)rT
1 c c l-r_ .
ch2 - _I [1 + (Kn)z :] CD + —(-I-(F = 0. (4-1)
n



From this expression, the correct equation for Cp is

1 1
(r -r)rn (r -1) r B 2
gl S [ )
c = 1 + - 1 +
D 1 (Kn)2 (Kn)2
2frcn
12
<ér;ﬁ> 1 - r)f}l/a
- (4-2)
(Kn)z
where
2Ci -1
2f = oz (4-3)
o
9 n-1
rc = (; + 1> (4-4)
2 n-L
K )2=—"-rD <} - ©® >. (4-5)

These equations show that the orifice coefficient is a function of the
orifice pressure ratio, r, the incompressible orifice coefficient Cj,
and the specific heat ratio n. Equation (4-2) can be simplified by
modifying it and substituting r; and (K,)2 from equations (4-4) and
(4-5).

From equation (4-4),

-l o,
o5 - () ()

n-1 n 1
<} T, > 7T 4-7)




After substituting equations (4-5) and (4-6) into equation (4-7),

we obtain

ntl
- (4-8)

s I X3
]

8

(2]
]

_ 2
(Kn)2 - n <n + 1> rc

Two terms can be simplified in equation (4-2) with équation (4-8).
1
(r -1r) r 0y .
B = [1 s—e_ e | - (4-9)
X)) J

(r -r)

- (ntl _xr
-< n nr) (4-10)

and

1 2 .
2rt
Q 2 ] 2<n: 1> _ (4-11)

®)Z

The compressible orifice coefficient for supercritical flow can be
expressed from equations (4-2), (4-10), and (4-11).

: [B-/BZ - F(E‘:—l a - r)lJ

L
n

Cc
(4-12)

C'D=

1
Fr




B. CD for Subcritical Flow (rc <r<1)

The compressible orifice coefficient Cp, according to Jobson's
report can also be expressed as a function of the specific heat ratio n,
the orifice pressure ratio r, and the incompressible orifice coefficient

Cy:
_ 1
<;rn\ 1 - x)f
CD = (K yZ } (4-13)
2frn
where
ZCi -1
2f = <z (4-14)
i
on 2 n-l |
(X )2 = rh <1 -r R > . (4-15)
n n -1

1
Equation (4-13) can be simplified by modifying the (2fn)2/(Kn)2 term
substituting (K,)® from equation (4-15).

SR
-

The compressible orifice coefficient can be obtained from equations
(4~13) and (4-16),

C=—l_§1.' é-><(1-r) ]

-r 1
(4-17)

F =

C]'_2




The compressible orifice coefficient at any particular pressure
ratio may be found by first determining F and substituting this value
into either equation (4-12) or (4-17) when r is greater or less than the
critical value r., respectively. A chart has been obtained in this way
(see Figure 5) for the typical case of n = 1.4 where the pressure ratio,

r, ranges from O to 1, and the orifice tube diameter ratio do/dt ranges
from 0 to .86.

V. THE MACH NUMBER FUNCTION Do

The Mach number function Dy, accroding to equation (2-7) is

. - . .
Do = G‘:> ¢y D, |- (5-1)

It can be seen that the D, is a function of the orifice coefficient Cp
and the orifice Mach number function Dg. The orifice coefficient and
the orifice Mach number function are different according to the pressure
ratio (see equations (4-12) and (4-17)).

D, can be expressed for supercritical flow as

_ (ntl)
1 2(n-1)
D=M<1+n; M2> . (5-2)
Since My = 1 at supercritical flow,
(nt+l)
9 2(n-1)
- (G2 -

Substituting equation (4-6) into equation (5-3), we obtain

ntl

2n
Do = rC

(5-4)



Since the orifice Mach number for subcritical flow is a function of
the orifice pressure ratio r,

<1+ > (n'l) ) (5-5)

The orifice Mach number function Do for subcritical flow can be obtained
from equations (5-2) and (5-5),

Yo

The Mach number function D, can be expressed:

n+1
<%n -r o) (5-6)

1. For supercritical flow from equations (4-12), (5-1), and
(5-4) as

2 '1/2 )
NG N NEEC TRy
B = n+ 1 _r
- n  nr

C

(5-7)

2. TFor subcritical flow from equations (4-17), (5-1), and
(5-6) as

2[_ |
D2=-b1:<:—z> LA-\/Az-F%(l-r)]
n=-1 l
=/n31< _rT)

(5-8)




VI. THE ORIFICE STATIC PRESSURE Py

The or1f1ce static pressure P, can be expressed using stagnation
pressure Po° and the Mach number Mo.

n

-1
Pgo n=-1
EZT = <} + 3 M25> . (6~1)

"It can also be obtained from equations (5-2) and (6-1) as a function of
the stagnation pressure P.° and the Mach number function.

) -6 ) @2

VII, THE CHARGE TUBE PRESSURE P,

The charge tube pressure can be obtained in thre€ different ways:

1. It is a function of the static pressure P, and the Mach

number M-, When the diaphragm of the supply tube is ruptured, an
expansion wave propagates into the stationary gas, accelerating it to

M>. The pressure across the expansion wave is

2n
P n-1 -1
F% = <1. + 2 M2> . ’ (7"1)

2. It can be expressed with the stagnation pressure P-°. The’
stagnation to static pressure ratio is

n
o .,
_1:_;,2__=<1+n;1M22>|11‘ (7-2)

2
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From equations (7-1) and (7-2),

5 . (7-3)

3. The charge tube pressure can be obtained also by the Mach
number function D, from equations (5-2) and (7-1).

n -1 H
Do = 7 . (7-4)
9 2(n-1)
<1 + == H2>
nzl
r El\Qn '
H= ‘L<P2,/ - 1}. (7-5)

VIII, SUMMARY OF EQUATIONS

The equations frequently used in-design of weight flow measurement
with orifices at short duration technique are summarized.

The Weight Flow

=
]

i/2 2
g o(.2
At <§T€> F2 <3;> CD D°

1/2
ng 0
At <£Té> P5” Do

1]

J1/z2
ng \ Bz
At <§T9> T Dz .
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The Orifice Coefficient

1. For Supercritical Flow (0 < r <r.):

L e ]

l
I

B=_n+1 T
n nr
ZCi-l
F = C 2

|

r = 2 -
c n+1 *

2. For Subcritical Flow (r. <r < 1):

R TEE

The Mach Number Function D,

. 1. For Supercritical Flow (0 <r < rg):

.]-.<:j_9‘2 2 1/2 B-/B2..F<n+1\>(1' ;
F\d, n+1 _ n r

n+1 r

B = ———— = —

n ure.
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2. For Subcritical Flow (rc <r <1):

oo 1) [a- v T
N

The Orificeée Static Pressure P,

J .

o
n-1
o)
P- = £(P5°, My, n) Po (142l M2
P 2
1|
P, = £(P5°, Dy, n) Dy = [( >
The Change Tube Pressure P
2n
n-1
Pl=f(P2, Me, n) 'P—J==<].+n-1M2>
Po 2
| o
n-1
P 1+ n_g'l' Mz
P, = £(P5°, M5, n) Lo =

s = |7 - =

n E 1 H
Py = £(Pp, Do, 0) Do = v
2(n-1)
<1 + —2 HZ\ :
n-1 J

n-1
2n 7
(& -
P
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IX, CONCLUSION

The enthalpy and the combustion temperatures are proportional to
the O/F ratio. To obtain the desired temperature, it is necessary to
.have an accurate mass flow measurement. The charge tube orifice dia-
meters have to be chosen so that the mass outflow through these orifices
has to be exactly equal to the mass outflow through the nozzles of the
model while maintaining the proper oxidant-fuel mixture ratio.

This report presents the equations and charts needed to select the
orifices for the required mass flow at any particular pressure ratio.
The charts are presented for oxygen when it is assumed to be a perfect
gas and has the specific-heat ratio of 1.4 (see Figures 6, 7, 8, and 9).
However, the general methods are applicable and the equations are usable
for any fuel-oxidizer system.
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